References and Notes
<A NAME="RD28908ST-1">1</A>
Curtius T.
Ber.
Dtsch. Chem. Ges.
1902,
35:
3266
<A NAME="RD28908ST-2">2</A>
Fisher E.
Ber.
Dtsch. Chem. Ges.
1905,
39:
530
<A NAME="RD28908ST-3A">3a</A>
Smith MB.
March J. In March’s Advanced Organic Chemistry
5th
ed.:
John Wiley & Sons, Inc.;
New
York:
2001.
p.506 ; and references
cited therein
<A NAME="RD28908ST-3B">3b</A>
Larock RC.
Comprehensive Organic
Transformations
Wiley-VCH;
Weinheim:
1989.
p.963
<A NAME="RD28908ST-4">4</A>
Merrifield B. in Peptides: Synthesis, Structures and Applications
Gutte B.
Academic Press;
San
Diego CA:
1995.
p.94
<A NAME="RD28908ST-5A">5a</A>
Koldobski GI.
Ostrovskii VA.
Gidaspov BV.
Russ.
Chem. Rev. (Engl. Transl.)
1978,
47:
1084
<A NAME="RD28908ST-5B">5b</A>
Smith PAS.
Org. React. (N.Y.)
1946,
3:
337
<A NAME="RD28908ST-5C">5c</A>
Surabhi P.
Wu X.
Hu L.
Tetrahedron
Lett.
2006,
47:
4609
<A NAME="RD28908ST-6A">6a</A>
Nguyen MT.
Raspoet G.
Vanquickenborne LG.
J.
Am. Chem. Soc.
1997,
119:
2552
<A NAME="RD28908ST-6B">6b</A>
Costa A.
Mesters R.
Riego JM.
Synth.
Commun.
1998,
28:
2275
<A NAME="RD28908ST-6C">6c</A>
Laurent A.
Jacquault P.
DiMarino J.-L.
Hamelin J.
J. Chem. Soc., Chem.
Commun.
1995,
1101
<A NAME="RD28908ST-7">7</A>
Piccolo O.
Filippini L.
Tinucci L.
Valoti E.
Citterio A.
Tetrahedron
1986,
42:
885
<A NAME="RD28908ST-8A">8a</A>
Schoenberg A.
Heck RF.
J.
Org. Chem.
1974,
39:
3327
<A NAME="RD28908ST-8B">8b</A>
Takács A.
Jakab B.
Petz A.
Kollár L.
Tetrahedron
2007,
63:
10372
<A NAME="RD28908ST-9">9</A>
Skoda-Földes R.
Kollár L.
Curr. Org. Chem.
2002,
6:
1097
<A NAME="RD28908ST-10A">10a</A>
El Ali B.
Alper H.
Synlett
2002,
161
<A NAME="RD28908ST-10B">10b</A>
Ma S.
Wu B.
Jiang X.
J.
Org. Chem.
2005,
70:
2588
<A NAME="RD28908ST-11">11</A>
Wan Y.
Alterman M.
Larhed M.
Hallberg A.
J. Org. Chem.
2002,
67:
6232
<A NAME="RD28908ST-12A">12a</A>
Wu XY.
Larhed M.
J.
Org. Chem.
2005,
70:
3094
<A NAME="RD28908ST-12B">12b</A>
Wannberg J.
Larhed M.
J. Org. Chem.
2003,
68:
5750
<A NAME="RD28908ST-13">13</A>
Mann A.
Petricci E.
Rota A.
Schoenfelder A.
Taddei M.
Org.
Lett.
2006,
8:
3725
<A NAME="RD28908ST-14">14</A>
Petricci E.
Salvadori J.
Mann A.
Taddei M.
Tetrahedron Lett.
2007,
48:
8501
<A NAME="RD28908ST-15">15</A>
Piras L.
Genesio E.
Ghiron C.
Taddei M.
Synlett
2008,
1125
<A NAME="RD28908ST-16">16</A>
Kormos CM.
Leadbeater NE.
Synlett
2006,
1663
<A NAME="RD28908ST-17">17</A>
Kormos CM.
Leadbeater NE.
Org. Biomol. Chem.
2007,
5:
65
<A NAME="RD28908ST-18">18</A> For a review on the argument, see:
Petricci E.
Taddei M.
Chem.
Today
2007,
25:
40
<A NAME="RD28908ST-19">19</A>
All reactions were performed in a
CEM Discover microwave oven equipped with a 10-mL tube for reactions
under pressure (CEM Corporation). This glass vial, tested for resisting
up to 250 psi (17 bar, 1723 KPa), is provided with a tube connection
to an external pressure controlling system equipped with a valve
and an exit tube for venting the vial at the end of the reaction.
The exit tube was connected to a cylinder containing CO through
a three-way connector equipped with two taps to pressurized the
system before microwave irradiation.¹³
<A NAME="RD28908ST-20">20</A>
Schoenberg A.
Bartoletti I.
Heck RF.
J.
Org. Chem.
1974,
39:
3318
<A NAME="RD28908ST-21">21</A>
Surprisingly the use of an additional
ligand such as 1,1-bis(diphenylphosphino)ferrocene (dppf) had a
negative influence on the reaction yields.
<A NAME="RD28908ST-22">22</A>
Working at 1 atm of CO at r.t., no
reaction occurred after
24 h.
<A NAME="RD28908ST-23">23</A>
General Procedure
for the Synthesis of Amides 8-14:
A
solution of the aryl bromide (0.46 mmol) and the amine (0.46 mmol)
in anhyd THF (1.5 mL) was placed in a 10-mL tube for microwave reactions.
DIPEA (240 µL, 1.38 mmol) and PdCl2
(PPh3)2 (16
mg, 0.023 mmol) were added and the solution was submitted to pressurized
CO (120 psi) and inserted in the cavity of a Discover System (CEM Corporation).¹³,¹9 After
heating for 20 min at 130 ˚C at 150 W (value previously
set on the microwave oven), the tube was cooled and the internal
gas pressure was released. The reaction mixture was filtered, evaporated
in vacuo and the amide was purified by flash chromatography.
4-[(4-Fluorophenyl)carbonyl]morpholine
(8): see ref. 30.
1-[(4-Fluorophenyl)carbonyl]-4-phenylpiperazine
(9): see ref. 31.
(
S
)-Methyl 2-[(4-Fluorophenyl)formamido]-2-phenyl-acetate
(10): ¹H NMR (400 MHz, CDCl3): δ = 7.56
(d, J = 5.6 Hz, 2 H), 7.36-7.42
(m, 5 H), 7.09-7.11 (m, 2 H), 5.73 (d, J = 7.2
Hz, 1 H), 3.75 (s, 3 H). ES-MS: m/z = 289 [M + 1]+.
4-Fluoro-
N
-phenylbenzamide (11): see ref. 32.
4-Ethyl-
N
-[(4-methoxyphenyl)methyl]benzamide
(12): ¹H NMR (400 MHz, CDCl3): δ = 7.37
(d, J = 8.0 Hz, 2 H), 7.27-7.31
(m, 5 H), 7.04 (d, J = 8.0 Hz,
2 H), 4.54 (d, J = 5.2 Hz, 2
H), 3.77 (s, 3 H), 2.58 (q, J = 8.2
Hz, 2 H), 1.20 (q,
J = 8.2
Hz, 3 H).
4-[(4-Ethylphenyl)carbonyl]morpholine
(13): see ref. 33.
2-Methoxy-
N
-[(4-methoxyphenyl)methyl]-5-nitrobenz-amide
(14): ¹H NMR (200 MHz, CDCl3): δ = 8.52
(m, 2 H), 7.64 (d, J = 2.1 Hz,
1 H), 7.26 (d, J = 7.8 Hz, 2
H), 6.82 (d, J = 7.8 Hz, 2 H),
4.48 (d, J = 3.5 Hz, 2 H), 3.84
(s, 3 H), 3.75 (s, 3 H). ES-MS: m/z = 339 [M + Na]+.
<A NAME="RD28908ST-24">24</A>
Surabhi P.
Wu X.
Hu L.
Tetrahedron
Lett.
2006,
47:
4609
<A NAME="RD28908ST-25A">25a</A>
Klapars A.
Antilla JC.
Huang X.
Buchwald SL.
J.
Am. Chem. Soc.
2001,
123:
7727
<A NAME="RD28908ST-25B">25b</A> See also:
Arora R.
Paul S.
Gupta R.
Can.
J. Chem.
2005,
83:
1137
<A NAME="RD28908ST-26">26</A>
Martinelli JR.
Clark TP.
Watson DA.
Munday RH.
Buchwald SL.
Angew. Chem. Int. Ed.
2007,
46:
8460
<A NAME="RD28908ST-27">27</A>
General Procedure
for the Synthesis of Amides 18-24:
A solution
of 1 (0.35 mmol) and the amine (0.23 mmol)
in anhyd THF (1 mL) was prepared in a 10-mL tube for microwave reactions.
Anhyd Cs2CO3 (225 mg, 0.69 mmol) and PdCl2
(PPh3)2 (16
mg, 0.023 mmol) were added and the solution was submitted to pressurized
CO at 120 psi and heated for 30 min at 120 ˚C by microwave
at 200 W (as previously described for amides 8-14). The tube was cooled and the internal
gas was released. The reaction mixture was filtered, evaporated
in vacuo and the crude mixture was analysed by HPLC and/or
purified by flash chromatography.
4-Ethyl-
N
-(3-nitrophenyl)benzamide
(18): ¹H NMR (400 MHz, CDCl3): δ = 8.45
(s, 1 H), 7.85-7.94 (m, 4 H), 7.32 (m, 1 H), 7.27 (d, J = 8.1 Hz, 2 H), 2.72 (q, J = 7.6 Hz, 2 H), 1.26 (q, J = 7.6 Hz, 3 H). ES-MS: m/z = 271 [M + 1]+,
293 [M + Na]+.
4-Ethyl-
N
-(2-methyl-3-nitrophenyl)benzamide (19):
¹H
NMR (400 MHz, CDCl3): δ = 7.70-7.91
(m, 4 H), 7.29 (d, J = 8.1 Hz,
2 H), 2.72 (q, J = 7.6 Hz, 2
H), 2.33 (s, 3 H), 1.26 (q, J = 7.6
Hz, 3 H). ES-MS: m/z = 285 [M + 1].
N
-(2-Chloro-5-nitrophenyl)-4-fluorobenzamide
(20): see ref. 12b.
4-Fluoro-
N
-(2-methyl-5-nitrophenyl)benzamide
(21):
¹H NMR (400 MHz, CDCl3): δ = 7.98-8.01
(m, 3 H), 7.41-7.52 (m, 3 H), 2.09 (s, 3 H). ES-MS: m/z = 275 [M + 1]+.
4-Ethyl-
N
-(quinolin-3-yl)benzamide (22): see ref.
34.
4-Fluoro-
N
-(1
H
-imidazol-2-yl)benzamide (23): ¹H
NMR (400 MHz, CDCl3): δ = 7.99 (d, J = 7.9 Hz, 2 H), 7.39 (d,
J = 7.9 Hz, 2 H),
6.95 (s, 2 H). ES-MS: m/z = 228 [M + Na]+.
4-Ethyl-
N
-(1,3-thiazol-2-yl)benzamide (24): ¹H
NMR (400 MHz, CDCl3): δ = 7.91 (d, J = 8.0 Hz, 2 H), 7.32 (d,
J = 8.0 Hz, 2 H), 7.12 (d, J = 3.6 Hz, 1 H), 6.93 (d, J = 3.6 Hz, 1 H), 2.73 (q, J = 7.6 Hz, 2 H), 1.26 (q, J = 7.6 Hz, 3 H). ES-MS: m/z = 235 [M + 1]+,
257 [M + Na]+.
<A NAME="RD28908ST-28">28</A>
N
-(5-Chloro-2-nitrophenyl)-4-ethylbenzamide (17):
A
solution of 1c (33 µL, 0.23 mmol)
and 16 (40 mg, 0.23 mmol) in anhyd THF
(1 mL) was prepared in a 10-mL tube for microwave reactions. Anhyd
Cs2CO3 (225 mg, 0.69 mmol) and PdCl2
(PPh3)2 (16
mg, 0.023 mmol) were added and the solution was submitted to pressurized
CO at 120 psi and heated for 30 min at 120 ˚C by microwave
at 200 W (as previously described for amides 8-14). The tube was cooled and the internal
gas was released. The reaction mixture was filtered, evaporated
in vacuo and the crude mixture was analysed by HPLC and/or
purified by flash chromatography.
¹H
NMR (400 MHz, CDCl3): δ = 11.51 (br
s, 1 H), 9.13 (s, 1 H), 8.25 (d, J = 7.8
Hz, 1 H), 7.88 (d, J = 8.0 Hz,
2 H), 7.34 (d, J = 8.0 Hz, 2
H), 7.13 (d, J = 7.8 Hz, 1 H),
2.72 (q, J = 7.6 Hz, 2 H), 1.26
(q, J = 7.6 Hz, 3 H). ES-MS: m/z = 319 [M + 1]+ (³5Cl),
321 [M + 1]+ (³7Cl).
<A NAME="RD28908ST-29">29</A>
Goldsmith RA,
Sutherlin DP,
Robarge KD, and
Oliveo AG. inventors; Int.
Patent Appl., WO2007059157.
<A NAME="RD28908ST-30">30</A>
Tillack A.
Rudloff I.
Beller M.
Eur.
J. Org. Chem.
2001,
3:
523
<A NAME="RD28908ST-31">31</A>
Yu MS.
Curran DP.
Nagashima T.
Org.
Lett.
2005,
7:
3677
<A NAME="RD28908ST-32">32</A> Waisser K., Kunes J., Kubicova
L., Budesinsky M., Exner O.; Magn. Reson.
Chem.; 1997, 35:
543
<A NAME="RD28908ST-33">33</A> inventors; Jacobson,
R. M. Eur. Patent Appl., EP 94-306464.
<A NAME="RD28908ST-34">34</A>
Wannberg J.
Larhed M.
J. Org. Chem.
2003,
68:
5750
<A NAME="RD28908ST-35">35</A> inventors; Jensen,
J. L.; Burek, P. P. Int. Patent Appl., WO 20040202.